Nebula Graph 源码解读系列 | 详解 Validator

整体架构

Nebula Graph Query Engine 主要分为四个模块,分别是 Parser、Validator、Optimizer 和 Executor。

Parser 完成对语句的词法语法解析并生成抽象语法树(AST),Validator 会将 AST 转化为执行计划,Optimizer 对执行计划进行优化,而 Executor 负责实际数据的计算。

这篇文章我们主要介绍 Validator 的实现原理。

目录结构

Validator 代码实现在 src/validatorsrc/planner 目录。

src/validator 目录主要包括各种子句的 Validator 实现,比如 OrderByValidatorLimitValidatorGoValidator 等等。

validator/
├── ACLValidator.h
├── AdminJobValidator.h
├── AdminValidator.h
├── AssignmentValidator.h
├── BalanceValidator.h
├── DownloadValidator.h
├── ExplainValidator.h
├── FetchEdgesValidator.h
├── FetchVerticesValidator.h
├── FindPathValidator.h
├── GetSubgraphValidator.h
├── GoValidator.h
├── GroupByValidator.h
├── IngestValidator.h
├── LimitValidator.h
├── LookupValidator.h
├── MaintainValidator.h
├── MatchValidator.h
├── MutateValidator.h
├── OrderByValidator.h
├── PipeValidator.h
├── ReportError.h
├── SequentialValidator.h
├── SetValidator.h
├── TraversalValidator.h
├── UseValidator.h
├── Validator.h
└── YieldValidator.h 

src/planner/plan 目录定义了所有 PlanNode 的数据结构,用于生成最终的执行计划。比如,当查询语句中含有聚合函数时,执行计划中会生成 Aggregate 节点,Aggregate 类会指定聚合函数计算时所需的全部信息,包括分组列和聚合函数表达式,Aggregate 类定义在 Query.h 中。Nebula 定义了一百多种 PlanNode,PlanNode::kind 定义在 PlanNode.h 中,在此不做详细阐述。

planner/plan/
├── Admin.cpp          
├── Admin.h             // administration related  nodes
├── Algo.cpp
├── Algo.h              // graph algorithm related nodes
├── ExecutionPlan.cpp
├── ExecutionPlan.h     // explain and profile nodes
├── Logic.cpp
├── Logic.h             // nodes introduced by the implementation layer
├── Maintain.cpp
├── Maintain.h          // schema related nodes
├── Mutate.cpp
├── Mutate.h            // DML related nodes
├── PlanNode.cpp
├── PlanNode.h          // plan node base classes
├── Query.cpp
├── Query.h             // DQL related nodes
└── Scan.h              // index related nodes

src/planner 目录还定义了 nGQL 和 match 语句的 planner 实现,用于生成 nGQL 和 match 语句执行计划。

源码解析

validator 入口函数是 Validator::validate(Sentence*, QueryContext*),负责将 parser 生成的抽象语法树转化为执行计划,QueryContext 中会保存最终生成的执行计划 root 节点,函数代码如下:

Status Validator::validate(Sentence* sentence, QueryContext* qctx) {
    DCHECK(sentence != nullptr);
    DCHECK(qctx != nullptr);

    // Check if space chosen from session. if chosen, add it to context.
    auto session = qctx->rctx()->session();
    if (session->space().id > kInvalidSpaceID) {
        auto spaceInfo = session->space();
        qctx->vctx()->switchToSpace(std::move(spaceInfo));
    }

    auto validator = makeValidator(sentence, qctx);
    NG_RETURN_IF_ERROR(validator->validate());

    auto root = validator->root();
    if (!root) {
        return Status::SemanticError("Get null plan from sequential validator");
    }
    qctx->plan()->setRoot(root);
    return Status::OK();
} 

该函数首先获取当前 session 的 space 信息并保存在 ValidateContext中,之后调用 Validator::makeValidator()Validator::validate() 函数。

Validator::makeValidator() 的功能是生成子句的 validator,该函数会首先生成 SequentialValidator,SequentialValidator 是 validator 的入口,所有语句都会首先生成 SequentialValidator。

SequentialValidator::validateImpl() 函数会调用 Validator::makeValidator() 生成相应子句的 validator。函数代码如下:

Status SequentialValidator::validateImpl() {
    Status status;
    if (sentence_->kind() != Sentence::Kind::kSequential) {
        return Status::SemanticError(
                "Sequential validator validates a SequentialSentences, but %ld is given.",
                static_cast<int64_t>(sentence_->kind()));
    }
    auto seqSentence = static_cast<SequentialSentences*>(sentence_);
    auto sentences = seqSentence->sentences();

    seqAstCtx_->startNode = StartNode::make(seqAstCtx_->qctx);
    for (auto* sentence : sentences) {
        auto validator = makeValidator(sentence, qctx_);
        NG_RETURN_IF_ERROR(validator->validate());
        seqAstCtx_->validators.emplace_back(std::move(validator));
    }

    return Status::OK();
}

同样地,PipeValidator、AssignmentValidator 和 SetValidator 也会生成相应子句的 validator。

Validator::validate() 负责生成执行计划,函数代码如下:

Status Validator::validate() {
    auto vidType = space_.spaceDesc.vid_type_ref().value().type_ref().value();
    vidType_ = SchemaUtil::propTypeToValueType(vidType);

    NG_RETURN_IF_ERROR(validateImpl());

    // Check for duplicate reference column names in pipe or var statement
    NG_RETURN_IF_ERROR(checkDuplicateColName());

    // Execute after validateImpl because need field from it
    if (FLAGS_enable_authorize) {
        NG_RETURN_IF_ERROR(checkPermission());
    }

    NG_RETURN_IF_ERROR(toPlan());

    return Status::OK();
}

该函数首先检查 space 和用户权限等信息,之后调用函数 Validator:validateImpl() 完成子句校验,validateImpl() 函数是 Validator 类的纯虚函数,利用多态调用不同子句的 validatorImpl() 实现函数。最后调用 Validator::toPlan() 函数生成执行计划,toPlan() 函数会生成子句的执行计划,子执行计划会被连接形成完整的执行计划,比如 match 语句中通过函数 MatchPlanner::connectSegments() 连接子执行计划,而 nGQL 语句则通过 Validator::appendPlan() 实现。

举例

下面我们以 nGQL 语句为例具体介绍一下以上流程。

语句:

GO 3 STEPS FROM "vid" OVER edge 
WHERE $$.tag.prop > 30 
YIELD edge._dst AS dst 
| ORDER BY $-.dst

这条 nGQL 语句在 validator 阶段主要经历三个过程:

制作子句 validator

首先会调用 Validator::makeValidator() 生成 SequentialValidator。在 SequentialValidator::validateImpl() 函数中会生成 PipeValidator,PipeValidator 会制作左右子句的 validator,分别是 GoValidator 和 OrderByValidator。

子句校验

子句校验阶段会分别校验 Go 和 OrderBy 子句。

以 Go 语句为例,会先校验语义错误,比如 aggregate 函数使用不当、表达式类型不匹配等等,然后依次校验内部子句,校验过程中会把校验的中间结果保存在 GoContext 中,作为 GoPlanner 生成执行计划的依据。比如 validateWhere() 会保存过滤条件表达式用于之后生成 Filter 执行计划节点。

    NG_RETURN_IF_ERROR(validateStep(goSentence->stepClause(), goCtx_->steps));  // 校验 step 子句
    NG_RETURN_IF_ERROR(validateStarts(goSentence->fromClause(), goCtx_->from)); // 校验 from 子句
    NG_RETURN_IF_ERROR(validateOver(goSentence->overClause(), goCtx_->over));   // 校验 over 子句
    NG_RETURN_IF_ERROR(validateWhere(goSentence->whereClause()));               // 校验 where 子句
    NG_RETURN_IF_ERROR(validateYield(goSentence->yieldClause()));               // 校验 yield 子句

plan 生成

Go 语句的子执行计划由 GoPlanner::transform(Astcontext*) 函数生成,代码如下:

StatusOr<SubPlan> GoPlanner::transform(AstContext* astCtx) {
    goCtx_ = static_cast<GoContext *>(astCtx);
    auto qctx = goCtx_->qctx;
    goCtx_->joinInput = goCtx_->from.fromType != FromType::kInstantExpr;
    goCtx_->joinDst = !goCtx_->exprProps.dstTagProps().empty();

    SubPlan startPlan = QueryUtil::buildStart(qctx, goCtx_->from, goCtx_->vidsVar);

    auto& steps = goCtx_->steps;
    if (steps.isMToN()) {
        return mToNStepsPlan(startPlan);
    }

    if (steps.steps() == 0) {
        auto* pt = PassThroughNode::make(qctx, nullptr);
        pt->setColNames(std::move(goCtx_->colNames));
        SubPlan subPlan;
        subPlan.root = subPlan.tail = pt;
        return subPlan;
    }

    if (steps.steps() == 1) {
        return oneStepPlan(startPlan);
    }
    return nStepsPlan(startPlan);
}

该函数首先调用 QueryUtil::buildStart() 构造start 节点,然后根据四种不同 step 的情况采用不同的方式生成计划。本例中语句会采用 nStepPlan 策略。

GoPlanner::nStepsPlan() 函数代码如下:

SubPlan GoPlanner::nStepsPlan(SubPlan& startVidPlan) {
    auto qctx = goCtx_->qctx;

    auto* start = StartNode::make(qctx);
    auto* gn = GetNeighbors::make(qctx, start, goCtx_->space.id);
    gn->setSrc(goCtx_->from.src);
    gn->setEdgeProps(buildEdgeProps(true));
    gn->setInputVar(goCtx_->vidsVar);

    auto* getDst = QueryUtil::extractDstFromGN(qctx, gn, goCtx_->vidsVar);

    PlanNode* loopBody = getDst;
    PlanNode* loopDep = nullptr;
    if (goCtx_->joinInput) {
        auto* joinLeft = extractVidFromRuntimeInput(startVidPlan.root);
        auto* joinRight = extractSrcDstFromGN(getDst, gn->outputVar());
        loopBody = trackStartVid(joinLeft, joinRight);
        loopDep = joinLeft;
    }

    auto* condition = loopCondition(goCtx_->steps.steps() - 1, gn->outputVar());
    auto* loop = Loop::make(qctx, loopDep, loopBody, condition);

    auto* root = lastStep(loop, loopBody == getDst ? nullptr : loopBody);
    SubPlan subPlan;
    subPlan.root = root;
    subPlan.tail = startVidPlan.tail == nullptr ? loop : startVidPlan.tail;

    return subPlan;
}

Go 语句生成的子执行计划如下:

Start -> GetNeighbors -> Project -> Dedup -> Loop -> GetNeighbors -> Project -> GetVertices -> Project -> LeftJoin -> Filter -> Project

Go 语句的功能是完成图的拓展,GetNeighbors 是执行计划中最重要的节点,GetNeighbors 算子会在运行期访问存储服务,拿到通过起点和指定边类型一步拓展后终点的 id,多步拓展通过 Loop 节点实现,Start 到 Loop 之间是 Loop 子计划,当满足条件时 Loop 子计划会被循环执行,最后一步拓展节点在 Loop 外实现。Project 节点用来获取当前拓展的终点 id,Dedup 节点对终点 id 进行去重后作为下一步拓展的起点。GetVertices 节点负责取终点 tag 的属性,Filter 做条件过滤,LeftJoin 的作用是合并 GetNeightbors 和 GetVertices 的结果。

OrderBy 语句的功能是对数据进行排序,子执行计划会生成 Sort 节点。

左右子句计划生成之后,PipeValidator::toPlan() 函数会调用 Validator::appendPlan() 连接左右子计划并得到最终的执行计划。完整执行计划如下:

Start -> GetNeighbors -> Project -> Dedup -> Loop -> GetNeighbors -> Project -> GetVertices -> Project -> LeftJoin -> Filter -> Project -> Sort -> DataCollect 

以上 Validator 部分就介绍完毕。

论坛相关问题

问:如何找寻 parser/GraphParser.hpp 文件

答:.h 文件是由编译时产生的文件,编译一次就有文件了。

以上为本篇文章的介绍内容。

交流图数据库技术?加入 Nebula 交流群请先填写下你的 Nebula 名片,Nebula 小助手会拉你进群~~

NG_RETURN_IF_ERROR(validateStep(goSentence->stepClause(), goCtx_->steps)); // 校验 step 子句
NG_RETURN_IF_ERROR(validateStarts(goSentence->fromClause(), goCtx_->from)); // 校验 from 子句
NG_RETURN_IF_ERROR(validateOver(goSentence->overClause(), goCtx_->over)); // 校验 over 子句
NG_RETURN_IF_ERROR(validateWhere(goSentence->whereClause())); // 校验 where 子句
NG_RETURN_IF_ERROR(validateYield(goSentence->yieldClause())); // 校验 yield 子句
能不能针对此处的例子做详细的说明

1 个赞

这些函数做的事情就是对 go 语句的各个子句做 validation,validation 的目的就是设置 goCtx_ 的一些数据结构,这些数据结果最终会被组装到执行计划上。至于每个函数的实现也不会太复杂,建议去阅读源代码,原因是这些代码都在变动,最新的 git 提交已经在这篇文章发表之后了,也没办法做太具体的讲解。

系列文章

1 个赞

感谢回复。我继续阅读其中一个语句代码加深理解。因为之前是java,暂时c++语言稍微吃力。 :rofl:

3 个赞