nebula-algorithm运行错误

nebula 2.6.1 用提交算法包的方式运行 nebula-algorithm的社区发现算法,报错ERROR ScanEdgeResultIterator: get storage client error,
java.util.NoSuchElementException: Unable to activate object

用SHOW HOSTS看storaged服务是好的 求解!

application配置如下:{
  # Spark relation config
  spark: {
    app: {
        name: LPA
        # spark.app.partitionNum
        partitionNum:100
    }
    master:local
  }

  data: {
    # data source. optional of nebula,csv,json
    source: nebula
    # data sink, means the algorithm result will be write into this sink. optional of nebula,csv,text
    sink: nebula
    # if your algorithm needs weight
    hasWeight: false
  }

  # Nebula Graph relation config
  nebula: {
    # algo's data source from Nebula. If data.source is nebula, then this nebula.read config can be valid.
    read: {
        # Nebula metad server address, multiple addresses are split by English comma
        metaAddress: "10.XX.126:9559"
        # Nebula space
        space: test
        # Nebula edge types, multiple labels means that data from multiple edges will union together
        labels: ["friend_"]
        # Nebula edge property name for each edge type, this property will be as weight col for algorithm.
        # Make sure the weightCols are corresponding to labels.
        weightCols: ["start_year"]
    }

    # algo result sink into Nebula. If data.sink is nebula, then this nebula.write config can be valid.
    write:{
        # Nebula graphd server address, multiple addresses are split by English comma
        graphAddress: "10.XX.126:9669"
        # Nebula metad server address, multiple addresses are split by English comma
        metaAddress: "10.XX.126:9559"
        user:root
        pswd:nebula
        # Nebula space name
        space:test
        # Nebula tag name, the algorithm result will be write into this tag
        tag:louvain
        # algorithm result is insert into new tag or update to original tag. type: insert/update
        type:insert
    }
  }

  local: {
    # algo's data source from Nebula. If data.source is csv or json, then this local.read can be valid.
    read:{
        filePath: "file:///tmp/algo_edge.csv"
        # srcId column
        srcId:"_c0"
        # dstId column
        dstId:"_c1"
        # weight column
        #weight: "col3"
        # if csv file has header
        header: false
        # csv file's delimiter
        delimiter:","
    }

    # algo result sink into local file. If data.sink is csv or text, then this local.write can be valid.
    write:{
        resultPath:/tmp/count
    }
  }


  algorithm: {
    # the algorithm that you are going to execute,pick one from [pagerank, louvain, connectedcomponent,
    # labelpropagation, shortestpaths, degreestatic, kcore, stronglyconnectedcomponent, trianglecount,
    # betweenness, graphtriangleCount]
    executeAlgo: louvain

    # PageRank parameter
    pagerank: {
        maxIter: 10
        resetProb: 0.15  # default 0.15
    }

    # Louvain parameter
    louvain: {
        maxIter: 20
        internalIter: 10
        tol: 0.5
   }

   # connected component parameter.
    connectedcomponent: {
        maxIter: 20
   }

   # LabelPropagation parameter
    labelpropagation: {
        maxIter: 20
   }

   # ShortestPaths parameter
    shortestpaths: {
        # several vertices to compute the shortest path to all vertices.
        landmarks: "1"
   }

    # Vertex degree statistics parameter
    degreestatic: {}

   # KCore parameter
   kcore:{
        maxIter:10
        degree:1
   }

   # Trianglecount parameter
   trianglecount:{}

   # graphTriangleCount parameter
   graphtrianglecount:{}

   # Betweenness centrality parameter. maxIter parameter means the max times of iterations.
   betweenness:{
        maxIter:5
   }

   # Clustering Coefficient parameter. The type parameter has two choice, local or global
   # local type will compute the clustering coefficient for each vertex, and print the average coefficient for graph.
   # global type just compute the graph's clustering coefficient.
   clusteringcoefficient:{
        type: local
   }

   # SingleSourceShortestPathAlgo parameter
   singlesourceshortestpath:{
        sourceid:"1"
   }

   # ClosenessAlgo parameter
   closeness:{}

   # BFS parameter
   bfs:{
       maxIter:5
       root:"10"
   }

   # HanpAlgo parameter
   hanp:{
       hopAttenuation:0.1
       maxIter:10
       preference:1.0
   }

   #Node2vecAlgo parameter
   node2vec:{
       maxIter: 10,
       lr: 0.025,
       dataNumPartition: 10,
       modelNumPartition: 10,
       dim: 10,
       window: 3,
       walkLength: 5,
       numWalks: 3,
       p: 1.0,
       q: 1.0,
       directed: false,
       degree: 30,
       embSeparate: ",",
       modelPath: "hdfs://127.0.0.1:9000/model"
   }

   # JaccardAlgo parameter
   jaccard:{
       tol: 1.0
   }
 }
}

此话题已在最后回复的 7 天后被自动关闭。不再允许新回复。

浙ICP备20010487号